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Abstract
In this paper we would like to suggest a matrix form of the string field for any
configuration of N D-instantons in bosonic string field theory.

PACS numbers: 11.25.Sq, 02.10.Yn

1. Introduction

Renewed attention has been paid to Witten’s [1] cubic bosonic open string field theory,
following Sen’s [3] conjectures that this formalism can be used to give an analytic description
of D25-brane decay in bosonic string theory (for a review and an extensive list of references,
see [2]). It seems to be possible that string field theory could give very interesting information
about the nonperturbative nature of string theory and consequently about M theory. For this
reason it seems interesting to study the relation between string field theory and matrix theory [4],
which is the most successful nonperturbative definition of M theory. For example, recent
progress in the vacuum string field theory [5–9, 11–16, 18–21] suggests that the string field
theory could be useful for better understanding of the basic fabric of the string theory.

In order to find a relation between matrix theory and string field theory, it would perhaps
be useful to study the non-Abelian extension of string field theory as well. As was stressed
in the original paper [1], the non-Abelian extension of string field theory can be very easily
implemented into its formalism by introducing Chan–Paton factors for various fields in the
string field theory action and including the trace over these indices. In modern language this
configuration corresponds to N coincident D25-branes.

In our previous paper [22] we proposed a generalized form of the string field theory
action that was suitable for description of the general configuration of D-instantons. We
have formulated this theory in a pure abstract form following the seminal paper [1]. In order
to support further our proposal, we think that it would be desirable to have an alternative
formulation of the generalized matrix string field theory action which would allow us to perform
more detailed calculation. In particular, it would be nice to have a matrix generalization of the
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action written in the conformal field theory (CFT) language [23,24]. In this paper we suggest a
possible form of the matrix-valued string fields that will be building blocks for the matrix CFT
formulation of the string field action. We present a compact form of this matrix-valued string
field. We shall study its operator product expansion (OPE) with the open string stress–energy
tensor and we shall show that in order for any general component of the string field to have
a well defined conformal dimension the background configuration of N D-instantons (n this
paper we shall discuss D-instantons only; the extension to Dp-branes of any dimension is
trivial) must obey one particular condition that can be interpreted as a requirement that the
background configuration of D-instantons is a solution of the equation of motion arising from
the low-energy action for the D-instanton matrix model. In our opinion this situation is similar
to the fact that consistent string field theory should be formulated using CFT, that forces the
background field to obey the equation of motion.

Then we extend our analysis to the case of infinitely many D-instantons and we show
that the well known non-Abelian configuration can be very easily included in our formalism.
In particular, we find such a matrix form of the string field and hence vertex operators that
precisely corresponds to the string field theory formulated around a noncommutative D-brane
background [25, 26].

In conclusion we outline our results and suggest extension of this work. In particular, it
will be clear from this paper that the extension of our approach to the supersymmetric case
can be very easily performed.

2. String field theory in the CFT formalism

In this section we review basic facts about bosonic string field theory, following mainly [2,3].
Gauge-invariant string field theory is described by the full Hilbert space of the first quantized
open string including b, c ghost fields subject to the condition that the states must carry ghost
number 1, where b has ghost number −1, c has ghost number 1 and the SL(2, C)-invariant
vacuum |0〉 carries ghost number 0. We denote by H the subspace of the full Hilbert space
carrying ghost number 1. Any state in H will be denoted as |�〉 and the corresponding vertex
operator �(x) is the vertex operator that creates state |�〉 from the vacuum state |0〉

|�〉 = �(x)|0〉. (2.1)

Since we are dealing with open string theory, the vertex operators should be put on the boundary
of the world-sheet.

The open string field theory action has a form

S = 1

g2
0

(
1

2α′ 〈I ◦ �(0)QB�(0)〉 +
1

3
〈f1 ◦ �(0)f2 ◦ �(0)f3 ◦ �(0)〉

)
, (2.2)

where g0 is the open string coupling constant, QB is the BRST operator and 〈 〉 denotes
the correlation function in the combined matter ghost CFT. I, f1, f2, f3 are conformal
mappings, the exact form of which is reviewed in [2], and fi ◦ �(0) denotes the conformal
transformation of �(0) by fi . For example, for � a primary field of dimension h, then
fi ◦ �(0) = (f ′

i (0))h�(fi(0)).
We can expand any state |�〉 ∈ H as

|�〉 = �(0)|0〉 = (φ(y) + Aµ(y)α
µ

−1 + Bµν(y)α
µ

−1α
ν
−1 + · · ·)c1|0〉 =

∑
α

φα(y)�α(0)|0〉,

(2.3)

where coefficients φα(y) in front of basis states |�α〉 of H depend on the centre-of-mass
state coordinate y and where index α labels all possible vertex operators of ghost number 1.
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As we think of the coefficient functions φα(y) as spacetime particle fields, we call |�〉 a string
field [2]. The vertex operator �(z) defined above is also called a string field.

The previous action describes string field theory living on one single D25-brane. In order
to describe a configuration of N coincident D25-branes we equip the open string with Chan–
Paton degrees of freedom so that coefficient functions become matrix valued and so does |�〉.
In the following we restrict ourselves to the case of N D-instantons where strings obey Dirichlet
boundary conditions in all dimensions and where coefficient functions are N × N matrices
without any dependence on y. We shall write such a string field as |�̂〉 and call it mostly in
the text a matrix-valued string field, keeping in mind that this is an N × N matrix where each
particular component |�̂〉ij corresponds to the string field that describes the state of the string
connecting the ith D-instanton with the j th D-instanton.

As we mentioned in the introduction, it would be interesting to have a formulation of the
string field action for any configuration of D-instantons. While some progress in this direction
was made in [22], we would like to find such a formulation of the action based on the CFT
description. As the first step in searching for such a string field theory action we propose
generalized matrix-valued vertex operators carrying CP factors that describe any configuration
of D-instantons. We shall discuss this approach in the next section.

3. String fields for N D-instantons

We propose the form of the matrix-valued string field which in our opinion provides a
description of the general configuration of N D-instantons in the bosonic string field theory.
D-instantons are characterized by the strings having Dirichlet boundary conditions in all
dimensions yI , I = 1, . . . , 26. Let us consider the situation with N D-instantons placed
in general positions. This background configuration is described by matrices (see, for
example [30, 31])

Y I =




yI
1 0 . . . 0

0 yI
2 . . . 0

. . . . . . . . . . . .

0 . . . 0 yI
N


 , I = 1, . . . , 26, (3.1)

where yI
i labels the coordinate of the ith D-instanton. Moreover, the configuration (3.1)

corresponds to the solution of the equation of motion of the low-energy matrix model effective
action and, as we shall see, some consistency requirements that will be posed on the matrix-
valued string fields also imply that the background configuration of N D-instantons (3.1) should
have this form.

It is well known that the string stretching from the ith D-instanton to the j th D-instanton
has an energy proportional to the distance between these two branes. More precisely, in the
CFT language with the background corresponding to N D-instantons in the general position
the ground state of the string going from the ith D-instanton to the j th D-instanton is described
by the vertex operator1

|ij〉 ≡ uij (z = 0)c(0)|0〉 ≡ c(0) exp

(
i(yI

i − yI
j )

2πα′ gIJ XJ (0)

)
|0〉, i, j = 1, . . . , N,

(3.2)

with |0〉 being the SL(2, C)-invariant vacuum state. In the previous expression gIJ is a flat
closed string metric gIJ = δIJ with signature (+ · · · +). Let us consider some state of ghost
1 Because we implicitly presume that U is normal ordered we shall not write the symbol of normal ordering. For
simplicity, we shall also consider the dependence of the world-sheet fields XI (z) on the holomorphic coordinate z

only.
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number 1 from the first quantized Hilbert space of the open string that does not depend on
the zero mode of XI(z), which means that �α = �α(∂X, c, b) commutes with uij given
above. The index α labels all possible vertex operators of ghost number 1. Then any string
field corresponding to the string going from the ith D-instanton to the j th D-instanton can be
written in CFT language in a similar form as in (2.3)

|�̂〉ij =
∑

α

Aα
ij�(0)αuij (0)|0〉, (3.3)

where (A)αij is the analogue of φα(y) in (2.3). Roughly speaking, matrix Aα ∈ U(N) contains
information on which string from the collection of all possible N2 strings of the system of
N D-instantons (or more precisely, with which amplitude of probability) is excited in a given
state characterized by the world-sheet operator �α(z). In the following we restrict ourselves
to one particular CFT operator �α(z) and its corresponding Aα . For this reason we omit the
index α from our formulae. In spite of this fact we shall still call �̂ a string field since it
describes the whole system.

From the previous analysis it is clear that any string field is N × N matrix that in more
detailed description has a form

�̂(0) =




A11u11(0) A12u12(0) . . . A1Nu1N(0)

A21u21(0) A22u22(0) . . . A2Nu2N(0)

. . . . . . . . . . . .

AN1uN1(0) . . . AN,N−1uN,N−1(0) ANNuNN(0)


 �(0). (3.4)

We would like to argue that this expression can be written in a more symmetric form. Our
proposal is that the generalized matrix-valued string field can be written as

�̂(z) = U(z)(A)�(z), (3.5)

where we define the N ×N matrix operator U(z)(·) that is a function of the matrices Y I and the
world-sheet fields XI(z). We shall show that for the background given (3.1) the operator (3.5)
reduces to (3.4). Now we should clarify some points regarding our proposal. First of all, we
consider a static configuration of N D0-instantons in a general position. As was said above
and as is well known, such a background is described by matrices Y I . CFT description of this
system leads to the emergence of winding charge as we argued above and as is well known.
This approach can be easily included in the CFT description of Witten’s open string field theory
as can be seen in the beautiful example of calculation of the mass of the D0-brane in [3]. In fact,
our approach can be seen as rewriting this approach in a more symmetric and general form,
that in our opinion could be more appropriate for string field theory formulation. As we shall
see, we can also start with the general matrices Y I and then using arguments of well defined
conformal transformation of vertex operators obtain a condition that Y I should obey. We shall
also be able to generalize this approach to the case of infinite-dimensional matrices Y I , that will
lead to the natural emergence of the string field theory for the CFT background corresponding
to a higher-dimensional D-brane as well known from matrix theory (for example [4]). For
these reasons we believe that our generalization could be useful.

We could also proceed in a different way in order to describe a general configuration of
D-instantons. We can start with the background of N D-instantons at the origin and try to find a
solution of the string field theory equation of motion corresponding to the marginal deformation
of this configuration to the general positions of D-instantons. However, as shown in [32], this is
a very difficult problem when an infinite number of component fields in the string field should
have nonzero expectation value. Then we see that a general configuration of D-instantons
in string field theory should be described by a very complicated object that contains infinite
components. On the other hand, when we start from the initial configuration of D-instantons



Remark on the string field for a general configuration of N D-instantons 5097

that is described by all string matrix values, then using the standard construction of the new
BRST operator (see, for example, [5, 10, 11]), we can conclude that the new BRST operator
describing string fluctuations around the new background configuration of D-instantons should
be matrix valued. Then, generalizing arguments of [32], we can argue that there should exist
a complicated, probably singular field redefinition that maps the new BRST operator to the
original one and where the new configuration of D-instantons is described by the CFT operators
whose forms were revived above and that measure the corresponding winding charge of the
strings going from the ith D-instanton to the j th D-instanton. In our proposal we presume
that such a field redefinition has already been performed so that the BRST operator is diagonal
and the background configuration of D-instantons is completely coded in the form of the new
matrix-valued operator.

To see this, we must first explain the meaning of the expression U(z)(A). This expression
simply corresponds to the expansion of the exponential function and successive action of the
commutators on matrix A. More precisely

U(A)ij = exp

(
i

2πα′ [Y
I , A]gIJ XJ (z)

)
ij

= Aij +
i

2πα′ [Y
I , A]ij gIJ XJ (z)

+
1

2

(
i

2πα′

)2

[Y I , [YK, A]]ij gIJ gKLXJ (z)XL(z) + · · · . (3.6)

The second term in (3.6) for Y I given in (3.1) is equal to
i

2πα′ [Y
I , A]ij gIJ XJ (z) = i

2πα′ [y
I
i δikAkj − Aiky

I
k δkj ]gIJ XJ (z)

= i

2πα′ [y
I
i − yI

j ]AijgIJ XJ (z), (3.7)

where there is no summation over i, j . In the same way the third term in (3.6) gives

1

2

(
i

2πα′

)2

[Y I , [YK, A]]ij gIJ gKLXJ (z)XL(z)

= 1

2

(
i

2πα′

)2

[Y I
im, [yK

m − yK
j ]Amj ]gIJ gKLXJ (z)XL(z)

= 1

2

(
i

2πα′

)2

(yI
mδim(yK

m − yK
j )Amj − (yK

i − yK
m )Aimδmjy

I
j )

× gIJ gKLXJ (z)XL(z)

= 1

2

(
i

2πα′

)2

(yI
i (yK

i − yK
j )Aij − (yK

i − yK
j )yI

j Aij )gIJ gKLXJ (z)XL(z)

= 1

2
Aij

(
i

2πα′

)2

(yI
i − yI

j )gIJ XJ (z)(yK
i − yK

j )gKLXL(z)

= 1

2
Aij

(
i

2πα′ (y
I
i − yI

j )gIJ XJ (z)

)2

, (3.8)

where from the fourth row there is no summation over i, j . To show that (3.5) really corresponds
to (3.4) for Y I given in (3.1) we use the proof by mathematical induction. Let us presume that
the following relation is valid for any P :(

i

2πα′

)P

[Y I1 , [Y I2 , . . . , [Y IP , A]]]ij gI1J1gI2J2 . . . gIP JP
XJ1(z)XJ2(z) . . . XJP (z)

= Aij

(
i

2πα′ (y
I
i − yI

j )gIJ XJ (z)

)P

. (3.9)
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Then for P + 1 we have(
i

2πα′

)P +1

[Y I1 , [Y I2 , . . . , [Y IP +1 , A]]]ij gI1J1gI2J2 . . . gIP +1JP +1X
J1(z)XJ2(z) . . . XJP +1(z)

= i

2πα′

[
YK

ik Akj

(
i

2πα′ (y
I
k − yI

j )gIJ XJ (z)

)P

−
(

i

2πα′ (y
I
i − yI

k )gIJ XJ (z)

)P

AikY
K
kj

]
gKLXL(z)

=
(

i

2πα′

)P +1(
yK

i Aij

(
(yI

i − yI
j )gIJ XJ (z)

)P

− yK
j Aij

(
(yI

i − yI
j )gIJ XJ (z)

)P )
gKLXL(z)

= Aij

(
i

2πα′ (y
I
i − yI

j )gIJ XJ (z)

)P +1

, (3.10)

where again there is no summation over i, j from the fourth row. Using the previous result we
obtain the expression

U(A)ij (z) = Aij exp

(
i

2πα′ (y
I
i − yI

j )gIJ XJ (z)

)
(3.11)

without summation over i, j . We then see that (3.5) has the correct form of a matrix-
valued string field for the description of the string configuration in the background (3.1) of
N D-instantons.

Before we turn to the next example, we must certainly find some consistency conditions
which these generalized conformal operators should obey. We shall proceed as follows. Let us
start with the general configuration of N D-instantons described by any U(N)-valued matrices
Y I . Then we require that the matrix-valued string field �̂ should obey the linearized equation
of motion of the string field theory action. In the Abelian case this leads to the requirement
that the given state is annihilated by the BRST operator QB . It is reasonable to presume that
this holds in the non-Abelian case as well, so we obtain the condition

QB |�̂〉 = 0, |�̂〉 = �(0)U(A)(0)|0〉. (3.12)

We shall study the consequence of this equation. In order to do this we must find an OPE
between various matrix-valued operators and the stress–energy tensor of the open string theory

T (z) = − 1

α′ ∂zX
I (z)∂zX

J (z)gIJ , XI (z)XJ (w) = − 1
2α′ ln(z − w)gIJ ,

I, J = 1, . . . , 26. (3.13)

Using (3.13) we can easily calculate the OPE between T (z) and U(0). For example, let
us consider the OPE between the stress–energy tensor (3.13) and the first two terms in the
expansion of U(0) acting on any A corresponding to any CFT operator �,

T (z)
i

2πα′ [Y
I , A]gIJ XJ (0) ∼ 1

z

i

2πα′ [Y
I , A]gIJ ∂zX

J (0),

T (z)
1

2

(
i

2πα′

)2

[Y I1 , [Y I2 , A]]gI1J1gI2J2X
J1(0)XJ2(0)

∼ 1

2z

(
i

2πα′

)2

[Y I1 , [Y I2 , A]]gI1J1gI2J2∂z(X
J1(0)XJ2(0))

− α′

4z2

(
i

2πα′

)2

[Y I , [Y J , A]]gIJ .

(3.14)
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Generally we have

T (z)
1

P !

(
i

2πα′

)P

[Y I1 , [Y I2 , . . . , [Y IP , A]]]gI1J1 . . . gIP JP
XJ1(0) . . . XJP (0)

∼ 1

z

1

P !

(
i

2πα′

)P P∑
k=1

[Y I1 , [Y I2 , . . . , [Y Ik , . . . , [Y IP , A]]]]

× gI1J1 . . . gIkJk
. . . gIP JP

XJ1(0) . . . XJk−1(0)∂zX
Jk (0)XJk+1(0) . . . XJP (0)

− 1

z2

α′

4P !

(
i

2πα′

)P P∑
m=1,n=2,m �=n

gIJ gIJmgJJn

× [Y I1 , [Y I2 , . . . , [Y Im, . . . , [Y In, . . . , [Y IP , A]]]]]gI1J1 . . . gIP JP

× XJ1(0) . . . XJm−1(0)XJm+1 . . . XJn−1(0)XJn+1(0) . . . XJP (0). (3.15)

From the previous expression we can deduce that generally there is no well defined OPE
between the stress–energy tensor and the matrix-valued string field. As a consequence of
this fact we cannot define how such a matrix-valued string field transforms under conformal
transformations and hence we cannot define string field action. In fact, in analogy with the
Abelian case we would like to have an OPE in the form

T (z)�̂(0) ∼ 1

z2
h(�̂)(0) +

1

z
∂z�̂(0), (3.16)

where h(�̂) is a conformal dimension of given field �̂. In order to obtain the OPE in a similar
form we demand that the background configuration of D-instantons obeys the following rule:

[Y I , [Y J , B]] − [Y J , [Y I , B]] = 0, ∀B, I, J = 1, . . . , 26, (3.17)
or equivalently

[[Y I , Y J ], B] = 0 ⇒ [Y I , Y J ] = iθIJ 1N×N. (3.18)
When we apply the trace operation on the last equation above we see that in the case of finite
matrices the only nontrivial solution is θIJ = 0; however, there is a nonzero θIJ in the case
of infinite-dimensional U(N) matrices Y I as well known from various matrix models (for a
review and an extensive list of references, see [33–36]). We can expect that this configuration
describes a higher-dimensional D-brane with noncommutative world-volume. In the case of
finite-dimensional matrices the only possible solution is

[Y I , Y J ] = 0. (3.19)

Conditions (3.18) and (3.19) are precisely solutions of the equation of motion arising from
the low-energy action for N D-instantons. We have seen a similar result in our previous
paper [22], where the requirement of the nilpotence of the matrix-valued BRST operator leads
to the conclusion that the background configuration of D-instantons must obey equations (3.18)
and (3.19).

Using (3.17) we can move Y Im and then Y In to the left-hand side of the second expression
in (3.15). Since we have P possible I and P − 1 J and they all appear in the expression in a
symmetric way, the summation in the second expression in (3.15) gives the factor P(P − 1),
so the second term in (3.15) gives

−α′P(P − 1)

4P !z2

(
i

2πα′

)P

gIJ [Y I , [Y J , [Y I1 , . . . , [Y IP−2 , A]]]]

× gI1J1 . . . gIP−2JP−2X
J2(0) . . . XJP−2(0)

= − α′

4z2(P − 2)!

(
i

2πα′

)2

gIJ

[
Y I ,

[
Y J ,

(
i

2πα′ [Y
K, ·]gKLXL(0)

)P−2

A

]]

(3.20)
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and the first equation in (3.15) gives

1

z

1

P !

(
i

2πα′

)P P∑
k=1

[Y I1 , [. . . , [Y Ik , [. . . , [Y IP , A]]]]]

× gI1J1 . . . gIkJk
. . . gIP JP

XJ1(0) . . . XJk−1(0)∂zX
Jk (0)XJk+1(0) . . . XJP (0)

= 1

zP !
∂z

((
i

2πα′

)
[Y I , · ]gIJ XJ (0)

)P

(A). (3.21)

Collecting all previous results we obtain the following OPE:

T (z)�̂(0) ∼ 1

z2

(
1

16π2α′ gIJ [Y I , [Y J , �̂(0)]] + h��̂(0)

)
+

1

z
∂z�̂(0), (3.22)

where h� is the conformal dimension of the operator �(0) in (3.5). We see that ‘the conformal
dimension’ of �̂ is now matrix valued and depends on the configuration of various D-instantons.
Since the ghost sector does not depend on the background configuration of D-instantons, the
action of the BRST operator on � is the same as in the Abelian case. When we also use the
gauge

b0|�〉 = 0 (3.23)

we see that the linearized equation of motion (3.12) leads to the condition

1

16π2α′ gIJ [Y I , [Y J , �̂(0)]] + h��̂(0) = 0, (3.24)

where (in gauge b0|�〉 = 0)

QB |�〉 = h�|�〉. (3.25)

Condition (3.24) expresses the fact that each component �̂ij of the matrix-valued string field
describes the state of the open string connecting the ith D-instanton with the j th D-instanton
which is on the mass shell. For example, for the diagonal background (3.1) the first term in
the bracket in (3.22) gives

1

16π2α′ gIJ [Y I , [Y J , �̂(0)]]ij = 1

16π2α′ gIJ [yI
i δik[Y J , �̂(0)]kj − [Y J , �̂(0)]ikδkj y

I
j ]

= 1

16π2α′ gIJ (yI
i − yI

j )(yJ
i − yJ

j )�̂ij (0) (3.26)

(again no summation over i, j ). Then we have a natural result that the conformal dimension
of each component �̂ij is proportional to the distance between the ith D-instanton and the j th
D-instanton.

The OPE between the generalized matrix-valued string field and the stress–energy tensor
also has an important consequence for the conformal transformation of the given string field
and hence for the generalized form of the string field action. Recall that a primary vertex
operator of conformal dimension h transforms under z′ = f (z) as

O′(z′) =
(

∂f

∂z

)−h

O(z) = exp{(−h ln(f ′(z))}O(z). (3.27)

From the second form of this description and from the fact that for the matrix-valued string
field the first term in (3.22) acts as a matrix on the given string field we can anticipate the
following generalized matrix-valued conformal transformation:

�̂′(z′) = exp

(
− ln(f (z))

[
1

16π2α′ gIJ [Y I , [Y J , ·]] + h�

])
(�̂)(z), (3.28)
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where the exponential function should be understood as a matrix-valued function and its action
on �̂(z) in the form of a Taylor expansion and where h� is the conformal dimension of the
operator �(z). In particular, for the background (3.1) we have

�̂(z)ij = Aij exp

(
i

2πα′ (y
I
i − yI

j )gIJ XJ (z)

)
. (3.29)

In order to determine the behaviour of this field under conformal transformation, we must
expand the exponential function in (3.28) and let it act on �̂. For example, for the
background (3.1) we obtain the result that the field �̂ij that describes the state of the string
going from the ith D-instanton to the j th D-instanton transforms under the general conformal
transformation according to the usual rule

�̂′(z′)ij =
(

df (z)

dz

)− 1
16π2α′ (yi−yj )

2−h�

�̂(z)ij . (3.30)

4. Vertex operators for configuration of N → ∞ D-instantons with nonzero θIJ

Now we turn to the second example, which is the background configuration of N D-instantons
(in this case N → ∞) in the form

[Y a, Y b] = iθab, a, b = 1, . . . , 2p, Ym = 0, m = 2p + 1, . . . , 26. (4.1)

As in the previous case we begin with (3.6), where the second term is proportional to

i[Y I , A]gIJ XJ (0). (4.2)

Following [27–29] we introduce the set of matrices

Ok = eiθ ij kipj , pb = θbcY
c, θacθ

cb = δb
a . (4.3)

Then we can write any matrix as follows:

A =
∫

d2pk exp[iθabkapb]A(k), (4.4)

where A(k) is an ordinary function. Then it is easy to see [28, 29]

[pi, Ok] = kiOk, [pi, pj ] = −iθij (4.5)

and consequently

2π

4π2α′ [Y
a, A]gabX

b(0) = [pa, A]GabX̃b(0) =
∫

d2pk kaG
abX̃b(0)A(k)Ok,

Gab = − 1

4π2α′2 θacgcdθ
db, X̃b(0) = 2πα′θbcX

c(0),(
i

2πα′

)P

[Y I1 , [Y I2 , . . . , [Y IP , A]]]gI1J1gI2J2 . . . gIP JP
XJ1(z)XJ2(z) . . . XJP (z)

= iP
∫

d2pk ka1G
a1b1X̃b1(z) . . . kaP

GaP bP X̃bP
(z)A(k)Ok.

(4.6)

Then it follows that

U(A)(z) =
∫

d2pk exp(ikX̃(z))A(k)Ok, kX̃ = kaG
abX̃b (4.7)

and consequently for any CFT operator �(z) (corresponding to some particular A) we obtain
the matrix-valued string field �̂

�̂ = U(A)�(z) =
∫

d2pk �(z) exp(ikX̃(z))A(k)Ok. (4.8)
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We define generalized matrix-valued vertex operators the form of which we can deduce
from (4.8),

V (k, �(z)) = �(z) exp(ikX̃(z))Ok. (4.9)

It is important to include the matrix Ok in the definition of the matrix-valued vertex operator
V in order to stress its matrix nature, since any correlation function of these operators contains
the trace over matrix indices. Let us consider two such matrix-valued vertex operators,

V (k1, �)(z) = Ok1�(z)eik1X(z), V (k2, 	)(z) = Ok2	(z)eik2X(z), (4.10)

which should appear in the calculation of the correlation function and in particular in the string
field theory action. Let us calculate the generalized OPE of these two operators, where we
include the matrix multiplication. In fact, the calculation of the OPE is an easy task. Matrix
multiplication only affects the parts containing Ok1 , Ok2 , that gives

Ok1Ok2 = exp(iθ ij (k1 + k2)ipj − 1
2 iθabkakb) = e− i

2 θabkakbOk1+k2 (4.11)

using

[iθabkapb, iθcdkcpd ] = −θabθcdkakc(−iθbd) = −iθabkakb (4.12)

and also using the relation

eAeB = eA+B+ 1
2 [A,B] (4.13)

that is valid for operators whose commutator is a pure number. Then we have

V (k1, �)(z)V (k2, 	)(w) = Ok1�(z)eik1X̃(z)Ok2	(w)eik2X̃(w) ∼ e− i
2 θabkakbOk1+k2

× ((z − w)
α′
2 k1aG

abk2b exp(i(k1 + k2)X̃(w))�(w)	(w) + · · ·) (4.14)

where the dots mean other possible singular terms arising from the expansion of eikX̃(z) and
from the OPE between �(z) and 	(w). We see that the previous OPE has the same form as
the OPE of the vertex operators in the presence of the background field Bab = ( 1

θ
)ab as is well

known from the seminal paper [25]. It is also important to stress that thanks to the redefinition
Xc(z) = 1

2πα′ θ
cdX̃d(z) the stress–energy tensor appears as

T (z) = − 1

α′ ∂X(z)I ∂X(z)J gIJ = − 1

α′

(
1

4π2α′ θ
acX̃c(z)θ

bdX̃dgab

)
− 1

α′ ∂Xi(z)∂Xj (z)gij

= − 1

α′ ∂X̃a(z)∂X̃b(z)G
ab − 1

α′ ∂Xi(z)∂Xj (z)gij . (4.15)

In other words, the world-sheet stress–energy tensor is expressed in terms of the open string
metric Gab in dimensions labelled with X̃a, X̃b, . . ., hence the OPE between the part of the
stress–energy tensor depending on the open string metric and any matrix-valued vertex operator
is a function of the open string quantities only, again in agreement with [25].

We should also study the generalized conformal transformation (3.28)

V ′(k, �, z′) = exp

(
− ln(f (z))

[
1

16π2α′ gIJ [Y I , [Y J , ·]] + h�

])
V (k, �, z). (4.16)

In fact, h� is given solely by the conformal dimension of �(z) and the matrix multiplication
defined in the exponential function in (4.16) acts on Ok only. Then we can expand the
exponential function and use (4.5). It is easy to see that we obtain the standard conformal
transformation of the vertex operator with the momentum ka

V ′(k, �, z′) = exp

(
− ln(f (z))

[
α′

4
k2 + h�

])
V (k, �, z) =

(
df (z)

dz

)− α′k2

4 −h�

V (k, �, z)

(4.17)
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with k2 = kaG
abkb. From this expression we see that V (k, �, z) has the conformal dimension

equal to α′k2/4 + h� as we could expect. We can also calculate the OPE between the stress–
energy tensor and matrix-valued vertex operators. Since the OPE between the vertex operator
and the stress–energy tensor determines the conformal dimension of the given operator and
this is known from (4.17), we do not need to work out this OPE and can determine its form
directly from (4.17).

5. A more general example

As the last example, let us consider the background configuration of D-instantons in the form

Y a = 1N×N ⊗ ya, Y i =




yi
1 ⊗ 1 0 . . . 0

0 yi
2 ⊗ 1 . . . 0

. . . . . . . . . . . .

0 . . . . . . yi
N ⊗ 1


 ,

i = 2p + 1, . . . , 26, (5.1)

where

[ya, yb] = iθab, a, b = 1, . . . , 2p (5.2)

are infinite-dimensional matrices. It is easy to see that this configuration obeys (3.18) and
hence corresponds to the consistent background configuration. Now we shall write any matrix
A as follows:

A =




A11 A12 . . . A1N

A21 A22 . . . A2N

. . . . . . . . . . . .

AN1 . . . . . . ANN


 , (5.3)

where Axy, x, y = 1, . . . , N are infinite-dimensional matrices. Let us write any Axy in the
form

Axy =
∫

d2pkxy Axy(kxy) exp(iθabkaxypb). (5.4)

Now we can write
i

2πα′ [Y
I , A]xygIJ XJ (z) = i

2πα′ [δxz ⊗ ya, Azy]gabX
b(z) +

i

2πα′ [y
i
xδxz ⊗ 1, Azy]gijX

j (z)

= [pa, A]xyG
abX̃b(z) +

i

2πα′ (y
i
x − yi

y)gijX
j (z)Axy

= i
∫

d2pkxy

(
kxyaG

abX̃b(z) +
1

2πα′ (y
i
x − yi

y)gijX
j (z)

)
Axy(kxy)Okxy

. (5.5)

The second term in (3.6) gives(
i

2πα′

)2

[Y I , [Y J , A]]gIKgKLXK(z)XL(z)

= i2
∫

d2pkxy kxya1G
a1b1X̃b1(z)kxya2G

a2b2X̃b2(z)Axy(kxy)Okxy

+ i2
∫

d2pkxyA(kxy)xy

(
1

2πα′ (y
i
x − yi

y)gijX
j (z)

)2

+ 2i2
∫

d2pkxy Okxy
kxyaG

abX̃b(z)
1

2πα′ (y
i
x − yi

y)gijX
j (z)

= i2
∫

d2pkxy Okxy
A(kxy)xy

(
kaxyG

abX̃b(z) +
1

2πα′ (y
i
x − yi

y)gijX
j (z)

)2

. (5.6)



5104 J Klusoň

Generally, we have(
i

2πα′

)P

[Y I1 , [Y I2 , . . . , [Y IP , A]]]xygI1J1gI2J2 . . . gIP JP
XJ1(z)XJ2(z) . . . XJP (z)

= iP
∫

d2pkxy

(
kxyaG

abX̃b(z) +
1

2πα′ (y
i
x − yi

y)gijX
j (z)

)P

A(kxy)xyOkxy
. (5.7)

Using these results we can write the generalized matrix-valued string field (3.5) in the form

�̂xy(z) =
∫

d2pkxy A(kxy)xy exp

(
ikxyX̃(z) +

i

2πα′ (y
i
x − yi

y)gijX
j (z)

)
Okxy

. (5.8)

In summary, we have obtained the matrix-valued string field for configuration of N D2p-
branes with the noncommutative world-volume in dimensions labelled with xa, a = 1, . . . , 2p,
that are placed in the different transverse positions labelled with yi

x, i = 2p + 1, . . . , 26,
x = 1, . . . , N .

We hope that the three examples given above sufficiently support our proposed form of
the generalized matrix string field (3.5). Then we propose that the string field theory action
for any configuration of N D-instantons obeying (3.18) has the form

S = 1

g2
0

Tr

(
1

2α′ 〈I ◦ �̂(0)QB�̂(0)〉 +
1

3
〈f1 ◦ �̂(0)f2 ◦ �̂(0)f3 ◦ �̂(0)〉

)
, (5.9)

where now conformal transformations I ◦ �̂(0), fi ◦ �̂(0), i = 1, 2, 3, are defined by (3.28).
The precise study of this action and its particular solutions will be performed in the forthcoming
work.

6. Conclusion

In this paper we have proposed the matrix-valued form of the string field, that could be useful
for description of D-instanton configuration using the string field theory action written in the
CFT language [23, 24]. We have calculated the OPE of these matrix-valued string fields with
the stress–energy tensor. We have seen that the condition that the OPE is well defined leads to
the requirement that the background configuration of D-instantons should obey the equation
that can be interpreted as the equation of motion arising from the low-energy matrix theory
action. We have also proposed the generalized conformal transformation of the matrix-valued
string fields.

As a next step of our research we shall study the proposed matrix-valued string field theory
action (5.9). We shall also extend this approach to the supersymmetric case.

Acknowledgment

We would like to thank Rikard von Unge for carefully reading the manuscript and many useful
comments. This work was supported by the Czech Ministry of Education under contract
no 143100006.

References

[1] Witten E 1986 Noncommutative geometry and string field theory Nucl. Phys. B 268 253
[2] Ohmori K 2001 A review on tachyon condensation in open string field theories Preprint hep-th/0102085
[3] Sen A 1999 Universality of the tachyon potential J. High Energy Phys. JHEP12(1999)027 (Preprint hep-

th/9911116)



Remark on the string field for a general configuration of N D-instantons 5105

[4] Banks T, Fischer W, Shenker S H and Susskind L 1997 M theory as a matrix model: a conjecture Phys. Rev. D
55 5112 (Preprint hep-th/9610043)

[5] Rastelli L, Sen A and Zwiebach B 2000 String field theory around the tachyon vacuum Preprint hep-th/0012251
[6] Hata H and Teragushi S 2001 Test of the absence of kinetic therms around the tachyon vacuum in cubic string

field theory Preprint hep-th/0101162
[7] Ellwood I E and Taylor W 2001 Open string field theory without open strings Preprint hep-th/0103085
[8] Feng B, He Y and Moeller N 2001 Testing the uniqueness of the open bosonic string theory vacuum Preprint

hep-th/0103103
[9] Ellwood I, Feng B, He Y and Moeller N 2001 The identity string field and the tachyon vacuum Preprint

hep-th/0105024
[10] Rastelli L, Sen A and Zwiebach B 2001 Classical solutions in string field theory around the tachyon vacuum

Preprint hep-th/0102112
[11] Rastelli L, Sen A and Zwiebach B 2001 Half-strings, projectors, and multiple D-branes in vacuum string field

theory Preprint hep-th/0105058
[12] Gross D J and Taylor W 2001 Split string field theory: I. Preprint hep-th/0105059
[13] Kawano T and Okuyama K 2001 Open string fields as matrices Preprint hep-th/0105129
[14] Rastelli L, Sen A and Zwiebach B 2001 Boundary CFT construction of D-branes in vacuum string field theory

Preprint hep-th/0105168
[15] Matsuo Y 2001 BCFT and sliver state Preprint hep-th/0105175
[16] David J R 2001 Excitations on wedge states and on the sliver Preprint hep-th/0105184
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